Publications

Explore publications by faculty and staff.

The results sourced below were populated by EBSCO. If you have any questions about our search criteria, please contact Jeffry Porter (jeffry.porter@millersville.edu).

On [formula omitted]-hamiltonian line graphs of claw-free graphs

Faculty Author(s): Zhan, Mingquan
Student Author(s): -
Department: MATH
Publication: Discrete Mathematics
Year: 2019
Abstract: For an integer s≥0, a graph G is s-hamiltonian if for any vertex subset S⊆V(G) with |S|≤s, G−S is hamiltonian, and G is s-hamiltonian connected if for any vertex subset S⊆V(G) with |S|≤s, G−S is hamiltonian connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Kučzel and Xiong in 2004 conjectured that every 4-connected line graph is hamiltonian connected (see Ryjáček and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman raised the characterization problem of s-hamiltonian line graphs. In Lai and Shao (2013), it is conjectured that for s≥2, a line graph L(G) is s-hamiltonian if and only if L(G) is (s+2)-connected. In this paper we prove the following.(i) For an integer s≥2, the line graph L(G) of a claw-free graph G is s-hamiltonian if and only if L(G) is (s+2)-connected.(ii) The line graph L(G) of a claw-free graph G is 1-hamiltonian connected if and only if L(G) is 4-connected.
Link: On [formula omitted]-hamiltonian line graphs of claw-free graphs

Return to directory