Publications

Explore publications by faculty and staff.

The results sourced below were populated by EBSCO. If you have any questions about our search criteria, please contact Jeffry Porter (jeffry.porter@millersville.edu).

Pancyclicity of 4-Connected {K1,3,Z8}-Free Graphs.

Faculty Author(s): Zhan, Mingquan
Student Author(s): -
Department: MATH
Publication: Graphs & Combinatorics
Year: 2019
Abstract: A graph G is said to be pancyclic if G contains cycles of lengths from 3 to |V(G)|. For a positive integer i, we use Zi to denote the graph obtained by identifying an endpoint of the path Pi+1 with a vertex of a triangle. In this paper, we show that every 4-connected claw-free Z8-free graph is either pancyclic or is the line graph of the Petersen graph. This implies that every 4-connected claw-free Z6-free graph is pancyclic, and every 5-connected claw-free Z8-free graph is pancyclic. [ABSTRACT FROM AUTHOR] Copyright of Graphs & Combinatorics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Link: Pancyclicity of 4-Connected {K1,3,Z8}-Free Graphs.

Return to directory